Sabtu, 14 Maret 2015

REAKSI REDOKS



REAKSI REDOKS
1.     Pengertian reaksi redoks
Reaksi redoks adalah reaksi kimia yang disertai perubahan bilangan oksidasi atau reaksi yang di dalamnya terdapat serah terima elektron anatar zat. Reaksi redoks sederhana dapat disetarakan dengan mudah tanpa metode khusus, seperti yang telah dijelaskan di kelas X. akan tetapi untuk reaksi yang cukup kompleks, ada dua metode yang dapat digunakan untuk meyetarakannnya, yaitu:
1)      Metode bilangan oksidasi
Adalah metode yang digunakan untuk reaksi yang berlangsung tanpa atau dalam air, dan memiliki persamaan reaksi lengkap (bukan ionik).

2)       Metode setengah reaksi (metode ion elektron), yang digunakan untuk reaksi yang berlangsung dalam air dan memiliki persamaan ionik.

2.      Menyetarakan reaksi  redoks

Ada dua macam cara untuk menyetarakan reaksi redoks yaitu :

1.       Metode bilangan oksidasi Prinsip dasar metode ini adalah jumlah kenaikan bilangan oksidasi dari reduktor (zat yang teroksidasi) sama dengan jumlah penurunan bilangan reduksi dari oksidator (zat yang tereduksi). Untuk menyetarakan persamaan redoks dengan metode ini, harus ditempuh langkah-langkah sebagai berikut:

1. Tulislah bilangan oksidasi setiap unsur untuk mengetahui unsur mana yang mengalami perubahan bilangan oksidasi.

2. Setarakan jumlah unsur yang mengalami perubahan bilangan oksidasi antara ruas kiri dengan ruas kanan dengan menambah koefisien yang tepat.

3. Tentukan jumlah berkurang dan bertambahnya bilangan oksidasi.

4. Setarakan jumlah perubahan jumlah bertambah dan berkurangnya bilangan oksidasi tersebut dengan memberi koefisien yang sesuai.

5. Setarakan unsur-unsur yang lainnya dalam urutan kation, anion, hidrogen,dan terakhir oksigen (KAHO)

Untuk lebih jelasnya, perhatikanlah contoh berikut.

Setarakan reaksi berikut dengan metode bilangan oksidasi:
MnO(s) + PbO2 (s) + HNO3 (aq)→ HMnO4(aq) + Pb(NO3)2 (aq)+ H2O(l)

Jawab:
Langkah 1, tulislah bilangan oksidasi setiap unsur untuk mengetahui unsur mana yang mengalami perubahan bilangan oksidasi..
+2 -2 +4 -2 +1 +5 -2 +1 +7 -2 +2 +5 -2 +1 -2
MnO(s) + PbO2 (s) + HNO3 (aq)→ HMnO4(aq) + Pb(NO3)2 (aq)+ H2O(l)
oksidasi
reduksi
Langkah 2, setarakan jumlah unsur yang mengalami perubahan bilangan oksidasi antara ruas kiri dengan ruas kanan dengan menambah koefisien yang tepat.
Terdapat 1 atom Mn di ruas kanan dan kiri, sehingga tidak perlu disetarakan
Terdapat 1 atom Pb di ruas kanan dan kiri, sehingga tidak perlu disetarakan
Langkah 3, tentukan jumlah berkurang dan bertambahnya bilangan oksidasi.
Oksidasi: +2 +7
MnO → HMnO4
jumlah kenaikan b.o = (jumlah atom Mn) x (kenaikan b.o per atom Mn)= (1) x (5) = 5
Reduksi: +4 +2 PbO2 → Pb(NO3)2 Jumlah penurunan b.o = (jumlah atom Pb) x (penurunan b.o per atom Pb) = (1) x (2) = 2 Langkah 4, setarakan jumlah perubahan jumlah bertambah dan berkurangnya bilangan oksidasi tersebut dengan memberi koefisien yang sesuai.
Untuk menyamakan perubahan bilangan oksidasi, maka dilakukan perkalian silang berikut:
Oksidasi: MnO → HMnO4 (x 2) diperoleh 2MnO → 2HMnO4
Reduksi: PbO2 → Pb(NO3)2 (x 5) 5PbO2 → 5Pb(NO3)2
Persamaan reaksi menjadi:
2MnO + 5PbO2 + HNO3→ 2HMnO4 + 5Pb(NO3)2 + H2O
Langkah 5, setarakan unsur-unsur yang lainnya dalam urutan kation, anion, hidrogen, dan terakhir oksigen (KAHO).
Kation, tidak ada Anion NO3-, jumlah anion NO3- di ruas kiri = 1 dan di ruas kanan = 10. jadi setarakan NO3- dengan mengubah koefisien HNO3 ruas kiri dari 1 menjadi 10. 2MnO + 5PbO2 + 10HNO3→ 2HMnO4 + 5Pb(NO3)2 + H2O Hidrogen. Jumlah atom hidrogen di ruas kiri 10 dan di ruas kanan 4.
 jadi, setarakan H dengan mengubah H2O di ruas kanan dari 4 menjadi 10. 2MnO + 5PbO2 + 10HNO3→ 2HMnO4 + 5Pb(NO3)2 + 4H2O
Oksigen. Jumlah atom oksigen di ruas kanan = 42 dan di ruas kiri =42. jadi sudah setara. Jadi, persamaan yang diperoleh adalah
2MnO + 5PbO2 + 10HNO3→ 2HMnO4 + 5Pb(NO3)2 + 4H2O

2.      Metode setengah reaksi atau metode ion electron

Prinsip dasar metode setengah reaksi adalah pemisahan reaksi oksidasi dan reaksi reduksi dalam reaksi redoks. Masing-masing reaksi tersebut dinamakan setengah reaksi oksidasi dan setengah reaksi reduksi. Kedua reaksi ini kemudian disetarakan secara terpisah, sebelum digabungkan kembali untuk memperoleh persamaan reaksi redoks yang sudah setara secara keseluruhan.

Ada beberapa hal yang perlu diperhatikan pada metode ini, yaitu:
Persamaan reaksi redoks merupakan penjumlahan dua setengah reaksi.
Jumlah elektron yang dilepaskan pada oksidasi sama dengan jumlah elektron yang ditangkap pada reduksi. Suasana berlangsungnya reaksi.

Metode setengah reaksi digunakan untuk reaksi redoks yang memiliki persamaan reaksi ionik dimana serah terima elektron digambarkan dengan jelas. Pembahasan metode ini, dibagi menjadi dua kondisi, yaitu untuk suasana asam dan suasana basa atau netral.
a. Reaksi redoks untuk larutan asam Penyetaraan reaksi redoks untuk kondisi asam dilakukan dengan penambahan ion H+. Untuk menyetarakan persamaan redoks pada suasana asam, harus ditempuh langkah-langkah sebagai berikut:
 
1. Tulislah bilangan oksidasi setiap unsur untuk mengetahui unsur mana yang mengalami perubahan bilangan oksidasi.

2. Tulislah kerangka setengah reaksi reduksi dan oksidasinya.

3. Setarakan jumlah unsur yang mengalami perubahan bilangan oksidasi antara ruas kiri dengan ruas kanan dengan menambah koefisien yang tepat.

4. Setarakan oksigen (O) dengan menambahkan H2O ke ruas yang kekurangan O

5. Setarakan hidrogen (H) dengan menambahkan H+ ke ruas yang kekurangan atom H

6. Setarakan muatan dengan menambahakan elektron (e-) ke ruas yang meuatannya lebih positif
 
7. Samakan jumlah elektron pada reaksi reduksi dan oksidasi
Untuk lebih jelasnya, perhatikanlah contoh berikut:
Contoh
Setarakan reaksi berikut dengan metode setengah reaksi:
Cu(s) + NO3-(aq) + H+(aq) → Cu2+(aq) + NO2 (g) + H2O (l)
Jawab:
Langkah 1, tulislah bilangan oksidasi setiap unsur untuk mengetahui unsur mana yang mengalami perubahan bilangan oksidasi.
0 +5 -2 +1 +2 +4 -2 +1 -2
Cu(s) + NO3-(aq) + H+(aq) → Cu2+(aq) + NO2 (g) + H2O (l)
oksidasi
reduksi
Langkah 2, tulislah kerangka setengah reaksi reduksi dan oksidasinya.
Reduksi:NO3-→NO2
Oksidasi: Cu → Cu2+
Langkah 3, setarakan jumlah unsur yang mengalami perubahan bilangan oksidasi antara ruas kiri dengan ruas kanan dengan menambah koefisien yang tepat.
Karena jumlah atom N dan Cu sudah setara, tidak ada yang perlu dilakukan
Reduksi: NO3- → NO2
Oksidasi: Cu → Cu2+
Langkah 4, setarakan oksigen (O) dengan menambahkan H2O ke ruas yang kekurangan O
Reduksi: NO3- → NO2 + H2O
Oksidasi: Cu → Cu2+
Langkah 5, setarakan hidrogen (H) dengan menambahkan H+ ke ruas yang kekurangan atom H
Reduksi: 2H+ + NO3- → NO2 +H2O
Oksidasi: Cu → Cu2+
Langkah 6, setarakan muatan dengan menambahkan elektron (e-) ke ruas yang muatannya lebih positif.
·         Pada reaksi reduksi, muatan ruas kiri = 1 x (muatan NO3-) = 1x (3-) =3-
Muatan ruas kanan = 2 x (muatan H+) = 2 x (1+) = 2+
Jadi, muatan ruas kiri (3-) dan ruas kanan (2+) dapat disetarakan dengan penambahan 1 e- di ruas kanan.
·         Pada reaksi oksidasi, muatan ruas kiri = 0
Muatan ruas kanan = (muatan Cu2+) = 2-
Jadi, muatan ruas kiri (0) dan ruas kanan (2-) dapat disetarakan dengan penambahan 2 e- di ruas kiri.
Reduksi: H2O + NO3- → NO2 +2H+ + e-
Oksidasi: 2e- + Cu → Cu2+
Langkah 7, Samakan jumlah elektron pada reaksi reduksi dan oksidasi dengan perkalian silang atau jika jumlah elektron pada reaksi reduksi dan oksidasi adalah kelipatan, maka gunakan faktor terkecil. Lalu, jumlahkan kedua setengah reaksi tersebut.
Reduksi: H2O + NO3- → NO2 +2H+ + e- (x2) 2H2O + 2NO3- → 2NO2 + 4H+ +2e-
Oksidasi: 2e- + Cu → Cu2+ (x1) 2e- + Cu → Cu2+ + Redoks: 2H2O + 2NO3- + Cu → 2NO2 + 4H+ + Cu2+
Jadi, persamaan yang diperoleh adalah
2H2O + 2NO3- + Cu → 2NO2 + 4H+ + Cu2+

b. Reaksi redoks untuk larutan basa atau netral Penyetaraan reaksi redok untuk larutan basa atau meta sama dengan larutan asam. Langkah 1-7 untuk larutan asam masih berlaku. Kita hanya perlu menambahkan langkah ke 8 dan 9,yaitu penambahan OH- dan perolehan total reaksi redoks. Untuk menyetarakan persamaan redoks pada suasanabasa, harus ditempuh langkah-langkah sebagai berikut:

1. Tulislah bilangan oksidasi setiap unsur untuk mengetahui unsur mana yang mengalami perubahan bilangan oksidasi.

2. Tulislah kerangka setengah reaksi reduksi dan oksidasinya.

3. Setarakan jumlah unsur yang mengalami perubahan bilangan oksidasi antara ruas kiri dengan ruas kanan dengan menambah koefisien yang tepat.

4. Setarakan oksigen (O) dengan menambahkan H2O ke ruas yang kekurangan O

5. Setarakan hidrogen (H) dengan menambahkan H+ ke ruas yang kekurangan atom H

6. Setarakan muatan dengan menambahakan elektron (e-) ke ruas yang meuatannya lebih positif

7. Samakan jumlah elektron pada reaksi reduksi dan oksidasi

8. Menambahkan OH- di ruas kiri dan kanan. Jumlah OH- harus sama dengan jumlah H+ yang ada. OH- dan H+ membentuk H2O.

9. Periksa apakah ada spesi yang sama di ruas kiri dan kanan. Jika ada,kurangi jumlah spesi yang lebih besar dengan yang lebih kecil.
Untuk lebih jelasnya, perhatikanlah contoh berikut:

contoh :
Setarakan reaksi berikut dengan metode setengah reaksi:
Au (s) + CN-(aq) +O2(g)→ Au(CN)4- (aq) +OH- (aq)

Jawab:
Langkah 1, tulislah bilangan oksidasi setiap unsur untuk mengetahui unsur mana yang mengalami perubahan bilangan oksidasi.
0 +4-3 0 +2 +4-3 -2 +1
Au (s) + CN- (aq) +O2(g)→ Au(CN)4- (aq) + OH- (aq)
reduksi
oksidasi
Langkah 2, tulislah kerangka setengah reaksi reduksi dan oksidasinya.
Reduksi: Au → Au2+ Oksidasi: O2→ OH-
Langkah 3, setarakan jumlah unsur yang mengalami perubahan bilangan oksidasi antara ruas kiri dengan ruas kanan dengan menambah koefisien yang tepat.
Reduksi: Au → Au2+Oksidasi: O2→ OH- (tidak ada)
Langkah 4, setarakan oksigen (O) dengan menambahkan H2O ke ruas yang kekurangan O
Reduksi: Au → Au2+ Oksidasi: O2→ OH- + H2O
Langkah 5, setarakan hidrogen (H) dengan menambahkan H+ ke ruas yang kekurangan atom H
Reduksi: Au → Au2+Oksidasi: 3H++O2→ OH- + H2O
Langkah 6, setarakan muatan dengan menambahkan elektron (e-) ke ruas yang muatannya lebih positif.
• Pada reaksi reduksi, muatan ruas kiri = 0 Muatan ruas kanan = 1 x (muatan Au2+) =1 x (2+) = 2+
Jadi, muatan ruas kiri (0) dan ruas kanan (2+) dapat disetarakan dengan penambahan 2 e- di ruas kanan.
• Pada reaksi oksidasi, muatan ruas kiri = 3 x (muatan H+) =3 x (1+) = 3+
Muatan ruas kanan = 1x (muatan OH-) = 1x (1-) = 1- Jadi, muatan ruas kiri (3+) dan ruas kanan (1-) dapat disetarakan dengan penambahan 4 e- di ruas kiri.
Reduksi: Au → Au2+ + 2e-
Oksidasi: 4e- +3H++O2→ OH- + H2O
Langkah 7, Samakan jumlah elektron pada reaksi reduksi dan oksidasi dengan perkalian silang atau jika jumlah elektron pada reaksi reduksi dan oksidasi adalah kelipatan, maka gunakan faktor terkecil. Lalu, jumlahkan kedua setengah reaksi tersebut.
Reduksi: Au → Au2+ + 2e- (x2) 2Au → 2Au2+ + 4e-
Oksidasi: 4e- + 3H+ +O2→ OH- + H2O (x1) 4e- + 3H+ +O2→ OH- + H2O +
Reaksi redoks:2Au +3H+ +O2→ 2Au2+ +OH-+H2O
Langkah 8, Menambahkan OH- di ruas kiri dan kanan. Jumlah OH- harus sama dengan jumlah H+ yang ada. OH- dan H+ membentuk H2O.
Reaksi redoks: 3OH- + 2Au + 3H+ + O2→ 2Au2+ + OH-+ H2O + 3OH-
Reaksi redoks: 3H2O + 2Au + O2→ 2Au2+ + H2O + 4OH-
Langkah 9, Periksa apakah ada spesi yang sama di ruas kiri dan kanan. Jika ada,kurangi jumlah spesi yang lebih besar dengan yang lebih kecil.
Reaksi redoks: 3H2O + 2Au + O2→ 2Au2+ + H2O + 4OH- (tidak ada)

Jadi, persamaan yang diperoleh adalah
3H2O + 2Au + O2→ 2Au2+ + H2O + 4OH-

SEL VOLTA (SEL GALVANI)

Sel Volta adalah sel elektrokimia yang menghasilkan arus listrik dari reaksi kimia berupa reaksi redoks spontan. Prinsip kerja sel Volta adalah sebagai berikut :
1. Energi hasil dari reaksi kini dirubah menjadi energi listrik
2. Reaksi yang berlangsung adalah reaksi redoks
3. Pada katoda terjadi reduksi dan merupakan kutub positif
4. Pada anoda terjadi oksidasi dan merupakan kutub negatif
Jadi katoda positif, Anoda negatif disingkat KPAN yang dibaca KAPAN
KOMPONEN SEL VOLTA
Rangkaian sel elektrokimia pertama kali dipelajari oleh LUIGI GALVANI (1780) dan ALESSANDRO VOLTA (1800). Sehingga disebut sel Galvani atau sel Volta. Keduanya menemukan adanya pembentukan energi dari reaksi kimia tersebut. Energi yang dihasilkan dari reaksi kimia sel Volta berupa energi listrik.
http://dessykimiapasca.files.wordpress.com/2011/06/gmbr-sel-volta.png?w=610
Sel Volta terdiri atas elektroda (logam seng dan tembaga) larutan elektrolit (ZnSO4 dan CuSO4), dan jembatan garam (agar-agar yang mengandung KCl). Logam seng dan tembaga bertindak sebagai elektroda. Keduanya dihubungkan melalui sebuah voltmeter. Elektroda tempat berlangsungnya oksidasi disebut Anoda (elektroda negatif), sedangkan elektroda tempat berlangsungnya reduksi disebut Katoda (elektroda positif)
Sel Galvani atau disebut juga dengan sel volta adalah sel elektrokimia yang dapat menyebabkan terjadinya energi listrik dari suatu reaksi redoks yang spontan. reaksi redoks spontan yang dapat mengakibatkan terjadinya energi listrik ini ditemukan oleh Luigi Galvani dan Alessandro Guiseppe Volta.
Sel Volta adalah rangkaian sel yang dapat menghasilkan arus listrik. Dalam sel tersebut terjadi perubahan dari reaksi redoks menghasilkan arus listrik.
Sel volta terdiri atas elektroda tempat berlangsungnya reaksi oksidasi disebut anoda(electrode negative), dan tempat berlangsungnya reaksi reduksi disebut katoda(electrode positif).

Rangkaian Sel Galvani

http://upload.wikimedia.org/wikipedia/id/c/c7/Sel_galvani.jpg
Contoh rangkaian sel galvani.
sel galvani terdiri dari beberapa bagian, yaitu:
  1. voltmeter, untuk menentukan besarnya potensial sel.
  2. jembatan garam (salt bridge), untuk menjaga kenetralan muatan listrik pada larutan.
  3. anoda, elektroda negatif, tempat terjadinya reaksi oksidasi. pada gambar, yang bertindak sebagai anoda adalah elektroda Zn/seng (zink electrode).
  4. katoda, elektroda positif, tempat terjadinya reaksi reduksi. pada gambar, yang bertindak sebagai katoda adalah elektroda Cu/tembaga (copper electrode).

Proses dalam Sel Galvani

Pada anoda, logam Zn melepaskan elektron dan menjadi Zn2+ yang larut.
Zn(s) → Zn2+(aq) + 2e-
Pada katoda, ion Cu2+ menangkap elektron dan mengendap menjadi logam Cu.
Cu2+(aq) + 2e- → Cu(s)
Hal ini dapat diketahui dari berkurangnya massa logam Zn setelah reksi, sedangkan massa logam Cu bertambah. Reaksi total yang terjadi pada sel galvani adalah:
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
Sel Volta dalam kehidupan sehari – hari :

1. Sel Kering (Sel Leclanche)

http://esdikimia.files.wordpress.com/2011/09/images.jpg?w=103Dikenal sebagai batu baterai. Terdiri dari katode yang berasal dari karbon(grafit) dan anode logam zink. Elektrolit yang dipakai berupa pasta campuran MnO2, serbuk karbon dan NH4Cl.
Persamaan reaksinya :
Katode : 2MnO2 + 2H+ + 2e ” Mn2O3 + H2O
Anode : Zn ” Zn2+ + 2e
Reaksi sel : 2MnO2 + 2H+ + Zn ” Mn2O3 + H2O + Zn2

2. Sel Aki

http://esdikimia.files.wordpress.com/2011/09/hal-6.png?w=250Sel aki disebut juga sebagai sel penyimpan, karena dapat berfungsi penyimpan listrik dan pada setiap saat dapat dikeluarkan . Anodenya terbuat dari logam timbal (Pb) dan katodenya terbuat dari logam timbal yang dilapisi PbO2.Reaksi penggunaan aki :
Anode : Pb + SO4 2- ” PbSO4 + 2e
Katode : PbO2 + SO42-+ 4H++ 2e ” PbSO4 + 2H2O
Reaksi sel : Pb + 2SO4 2- + PbO2 + 4H+ ” 2PbSO4 + 2H2O
Reaksi Pengisian aki :
2PbSO4 + 2H2O ” Pb + 2SO4 2- + PbO2 + 4H+

3. Sel Perak Oksida

Sel ini banyak digunakan untuk alroji, kalkulator dan alat elektronik.
Reaksi yang terjadi :
Anoda : Zn(s) + 2OH-(l) ” Zn(OH)2(s) + 2e
Katoda : Ag2O(s) + H2O(l) + 2e ” 2Ag(s) + 2OH-(aq)
Reaksi Sel : Zn(s) + Ag2O(s) + H2O(l) ” Zn(OH)2(s) + 2Ag(s)
Potensial sel yang dihasilkan adalah 1,34 V

4. Sel Nikel Cadmium (Nikad)

Sel Nikad merupakan sel kering yang dapat diisi kembali (rechargable). Anodenya terbuat dari Cd dan katodenya berupa Ni2O3 (pasta). Beda potensial yang dihasilkan sebesar 1,29 V. Reaksinya dapat balik :
NiO(OH).xH2O + Cd + 2H2O → 2Ni(OH)2.yH2O + Cd(OH)2

5. Sel Bahan Bakar

Sel Bahan bakar merupakan sel Galvani dengan pereaksi – pereaksinya (oksigen dan hidrogen) dialirkan secara kontinyu ke dalam elektrode berpori. Sel ini terdiri atas anode dari nikel, katode dari nikel oksida dan elektrolit KOH.
Reaksi yang terjadi :
Anode : 2H2(g) + 4OH-(aq) → 4H2O(l) + 4e
Katode : O2(g) + 2H2O(l) + 4e → 4OH-(aq)
Reaksi sel : 2H2(g) + O2 → 2H2O(l)
Sel elektrolisis
Sel elektrolisiselektrokimia di dalam sel.

Elektrolisis artinya penguraian suatu zat akibat arus listrik. Zat yang terurai dapat berupa padatan, cairan, atau larutan. Arus listrik yang digunakan adalah arus searah (direct current = DC).
Tempat berlangsungnya reaksi reduksi dan oksidasi dalam sel elektrolisis sama seperti pada sel volta, yaitu anode (reaksi oksidasi) dan katode (reaksi reduksi). Perbedaan sel elektrolisis dan sel volta terletak pada kutub elektrode. Pada sel volta, anode (–) dan katode (+), sedangkan pada sel elektrolisis sebaliknya, anode (+) dan katode (–).
Pada sel elektrolisis anode dihubungkan dengan kutub positif sumber energi listrik, sedangkan katode dihubungkan dengan kutub negatif. Oleh karena itu pada sel elektrolisis di anode akan terjadi reaksi oksidasi dan dikatode akan terjadi reaksi reduksi.

Elektrolisis Air

Alat yang akurat untuk penyelidikan elektrolisis air adalah alat elektrolisis Hoffman. Alat ini dilengkapi elektrode platina dalam tabung penampung gas berskala sehingga volume gas hasil elektrolisis mudah diukur.

Reaksi redoks yang terjadi dalam sel elektrolisis adalah
Anode (+):   2H2O(l) → O2(g) + 4H+(aq) + 4e (oksidasi O2–)
Katode (–):  4H2O(l) + 4e  → 2H2(g) + 4OH(aq) (reduksi H+)
Reaksi : 2H2O(l) → 2H2(g) + O2(g)
Berapakah perbandingan volume gas H2 dan O2 yang terbentuk pada kedua tabung reaksi? Berdasarkan persamaan reaksi redoks dapat diramalkan bahwa perbandingan volume gas H2 terhadap O2 adalah 2 : 1. Jika volume gas H2 20 mL, volume gas O2 adalah 10 mL.

Elektrolisis Larutan

Elektrolisis larutan berbeda dengan elektrolisis air. Misalnya larutan NaI, terdapat ion Na+ dan ion I. Kedua ion ini bersaing dengan molekul air untuk dielektrolisis.
Di katode terjadi persaingan antara molekul H2O dan ion Na+ (keduanya berpotensi untuk direduksi). Demikian juga di anode, terjadi persaingan antara molekul H2O dan ion I (keduanya berpotensi dioksidasi). Spesi mana yang akan keluar sebagai pemenang? Pertanyaan tersebut dapat dijawab berdasarkan nilai potensial elektrode standar.
Setengah reaksi reduksi di katode:
Na+(aq) + e → Na(s)      E° = –2,71 V
2H2O(l) + 2e → H2(g) + 2OH(aq)    E° = –0,83 V
Berdasarkan nilai potensialnya, H2O lebih berpotensi direduksi dibandingkan ion Na+ sebab memiliki nilai E° lebih besar. Perkiraan ini cocok dengan pengamatan, gas H2 dilepaskan di katode.
Setengah reaksi oksidasi di anode:
2I(aq) → I2(g) + 2e–        E° = –0,54 V
2H2O(l) → O2(g) + 4H+(aq) + 4e     E° = –1,23 V
Berdasarkan nilai potensial, ion I memenangkan persaingan sebab nilai E° lebih besar dibandingkan molekul H2O.
Reaksi yang terjadi pada sel elektrolisis:
Katode: 2H2O(l) + 2e → H2(g) + 2OH(aq)
Anode: 2I(aq) → I2(g) + 2e
Reaksi: 2H2O(l) + 2I(aq) → H2(g) + I2(g) + 2OH(aq)
HUKUM FARADAY

Hukum Faraday 1

Hukum Faraday 1 menyatakan bahwa massa zat yang dibebaskan pada suatu elektrolisis berbanding lurus dengan jumlah listrik yang mengalir. Secara matematis dapat dituliskan seperti berikut.
G ≈ Q ….. (a)
Keterangan:
G = massa zat yang dibebaskan (gram)
Q = jumlah listrik yang digunakan (Coulomb)
Apabila jumlah muatan listrik merupakan hasil kali kuat arus (I) dengan waktu (t), maka persamaan di atas dapat ditulis seperti berikut.
G = I t ….. (b)
Seperti kita ketahui bahwa dalam reaksi elektrolisis di katode terjadi reaksi reduksi dengan persamaan:
Ln+(aq) + n e¯ → L(s)
Untuk mengendapkan 1 mol L diperlukan sejumlah n mol elektron. Oleh karena itu, untuk mengendapkan sejumlah logam maka jumlah listrik yang diperlukan adalah.
Q = n (e¯) × F ….. (c)
Keterangan:
F = Konstanta Faraday (96.500 C/mol)
n (e¯) = mol elektron
Jika persamaan (b) dan persamaan (c) kita substitusikan pada persamaan (a) maka diperoleh persamaan seperti berikut.
I t = n (e¯) × 96.500Hukum Faraday
Banyaknya zat yang diendapkan selama elektrolisis dengan arus I ampere dan waktu t detik adalah seperti berikut.
Ln+(aq) + n e¯ → L(s)
n mol e¯  ~  1 mol L
Redoks dan ElektrokimiaJadi untuk menghitung massa logam yang terendapkan,
dapat dilakukan dengan persamaan berikut ini.
G = mol × Ar
Redoks dan ElektrokimiaRedoks dan ElektrokimiaAr/n disebut juga massa ekuivalen (Me).
Oleh karena itu,
persamaan di atas dapat juga ditulis seperti berikut:
Materi Kimia Kelas XIIKeterangan:
G = massa zat terendapkan (gr)
I = kuat arus (ampere)
t = waktu (sekon)
Me= massa ekuivalen
n = muatan ion L (biloks)

Huku Faraday 2Hukum Faraday 2

Hukum Faraday 2 menyatakan bahwa zat yang dibebaskan dalam elektrolisis berbanding lurus dengan massa ekuivalen zat itu. Secara matematis, pernyataan tersebut dapat dituliskan seperti berikut.
G ≈ Me
Jika arus listrik yang sama dialirkan dalam dua buah sel elektrolisis yang berbeda maka perbandingan massa zat yang dibebaskan akan sama dengan perbandingan massa ekuivalennya.
Materi Kimia SMAOleh karena itu, menurut hukum Faraday 2, massa zat terendapkan hasil dua buah elektrolisis dengan arus listrik yang sama secara matematis dapat dituliskan seperti berikut.
Keterangan:
G=massa hasil elektrolisis (gram) Me= massa ekuivalen




Penerapan Reaksi Redoks dan elektrokimia  dalam Kehidupan Sehari-hari

1.      Reaksi Redoks Pada Pengolahan LogamPada pemekatan biji logam dari batu karang baik secara fisika maupun kimia kemudian dipekatkan menjadi bijih pekat. Bijih pekat tersebut direduksi dengan zat pereduksi yang paling tepat.
3C(S)+ 4Al3+(l)+ 6O-2(l) 4Al(l)+ 3CO2
l_________________l
reaksi reduksi
2.      Reaksi Redoks Pada Penyambungan BesiRel-rel dilas dengan proses termit . Campuran aluminium dan besi oksida disulut untuk untuk reaksi redoks dan panas yang dihasilkan dapat melumerkan permukaan rel.Reaksi :
2Al(s)+ Fe2O3(S) 2Fe(s)+ Al2O3(S)
3.      Reaksi Redoks Pada Sel Aki
Pb(s)+ PbO2(aq)+ 2HSO4-2(aq)+2H+(aq) 2PbSO4(S)+ 2H2O(l)
4.      Reaksi redoks Pada Baterai (sel Leclanche)
Zn(s)+ 2NH4+(aq)+ 2MnO2(S) Zn2+(aq)+ Mn2O3(s)+ 2NH3(aq)+ H2O(l)
5.      Reaksi Redoks Pada Pengolahan Air Limbah
a.      Penerapan Konsep Elektrolit Limbah yang mengandung logam berat (Hg+2, Pb+2, Cd+2, dan Ca2+) direaksikan denganelektrolit yang mengndung anion (SO4-2) yang dapat mengendapkan ion logam sehingga air limbah bebas dari air limbahPb+2(aq )+ SO4-2(aq) PbSO4(S)
b.      Ph Libahan LuurAkTi Luurakti mengandung bak teribak teriaerb yang berfungsi sebagai oksidatorbah anorganik tanpa menggunakan oksigen terarut dalam air sehingga harga BOD dapat di kurangi.Zat atorganik di oksidasi menjadiCO2,H2O, NH4+dan sel biomassa baru. PrOses lumpurakt berlangsung di tangki aerasi. Di kolam tersebut berlangsung proses oksidasi limbah organik(karbohidrat, protein, minyak). Hasil oksidasi senyawa- senyawa organi adalah CO2,H2O, sulfat, nitrat, dan fosfat. Oksigen yang di peroleh untuk olsidasi di peroleh dari proses fotosintesa alga yang hidup ditangki aerasi
6.      Reaksi Redoks Pada Sel Volta (Sel Galvani)Sel elektro kimia dimana reaksi oksidasi - reduksi spontan terjadi dan menghasilkan beda potensial dI sebut sel galvani . Dalam sel galvani energy kimia diubah menjadi energi listrik. Selgalvani juga sering di sebut Sel Volta. Contoh sel galvani adalah baterai.Energi yang di lepaskan sel dapat di gunakan untuk menyalakan radio dengan menghubungkan kabel dari elektroda ke radio. Reaksi keseluruhan sel tembaga- magnesium ini adalah reaksi redoks.
Mg( s) + Cu2+(aq)Mg2+(aq) + Cu (s)
Apakah fungsi jembatan garam? Ketika setengah reaksi berlanjut, ion-ion magnesium di lepaskan ke larutan pada anoda, dan ion- ion tembaga pindah ke katoda. Ion- ion harus bisa bergerak bebasan tara kedua elektroda untuk menetralkan muatan positif (kation Mg2+) yang dihasilkan pada anoda dan muatan negatif (anion) yang tertinggal pada katoda. Larutan ion-ion dalam jembatan garam dapat menetralkan muatan positif dan negatif dalam larutan dan mencegah timbulnya kelebihan muatan pada elektroda. Reaksi redoks yang sama terjadi jika logam magnesium di letakkan langsung dalam larutan tembaga sulfat, dengan reaksi yaitu
Mg + Cu2+Mg2++ Cu.
Akan tetapi , inI bukan sel galvani karena elektron tidak mengalir melalui rangkaian luar.Elektron bergerak langsung dari logam magnesium ke ion- ion tembaga, membentuk logam tembaga. Ini adalah cara membuat logam tembaga dari ion- ion tembaga, tapi tidak untuk membangkitkan tenaga Listrik.
7.      Reaksi Redoks Pada Gas Alam Jika gas alam di bakar , maka akan membentuk reaksi sebagai berikut 
CH4(g) + 2O2(g) = CO2(g) + 2H2O(g)
8.      Reaksi Redoks dalam BiologiPernapasan sel, contohnya, adalah oksidasi glukosa (C6H12O6) menjadi CO2dan reduksi oksigenmenjadi air. Persamaan ringkas dari pernapasan sel adalah:C6H12O6+ 6 O2 6 CO2+ 6 H2O

1.      Zat pemutih
Zat pemutih adalah senyawa yang dapat digunakan untuk menghilangkan warna benda, seperti pada tekstil, rambut dan kertas. Penghilangan warna terjadi melalui reaksi oksidasi. Oksidator yang biasa digunakan adalah natrium hipoklorit (NaOCl) dan hidrogen peroksida (H2O2). Warna benda ditimbulkan oleh elektron yang diaktivasi oleh sinar tampak. Hilangnya warna benda disebabkan oksidator mampu menghilangkan elektron tersebut. Elektron yang dilepaskan kemudian diikat oleh oksidator. Reaksinya: Proses oksidasi pada pemutihan:
2.      Fotosintesis
Fotosintesis adalah proses reaksi oksidasi-reduksi biologi yang terjadi secara alami. Fotosintesis merupakan proses yang kompleks dan melibatkan tumbuhan hijau, alga hijau atau bakteri tertentu. Organisme ini mampu menggunakan energi dalam cahaya matahari (cahaya ultraviolet) melalui reaksi redoks menghasilkan oksigen dan gula.
Reaksi oksidasi:
            
Reaksi reduksi:


3.      Pembakaran
Pembakaran merupakan contoh reaksi redoks yang paling umum. Pada pembakaran propana  (C3H8-;) di udara (mengandung O2), atom karbon teroksidasi membentuk CO2 dan atom oksigen tereduksi menjadi H2O.
Reaksi:
4.      Baterai Nikel Kadmium
Baterai nikel-kadmium merupakan jenis baterai yang dapat diisi ulang seperti aki,baterai HP, dll. Anoda yang digunakan adalah kadmium, katodanya adalah nikel danelektrolitnya adalah KOH. Reaksi yang terjadi:
anoda : Cd + 2 OH-→Cd(OH)2+ 2e
katoda : NiO(OH) + H2O→Ni(OH)2+ OH-
Potensial sel yang dihasilkan sebesar 1,4 volt.
5.      Baterai alkali
Baterai alkali hampir sama dengan bateri karbon-seng. Anoda dan katodanya samadengan baterai karbon-seng, seng sebagai anoda dan MnO2 sebagai katoda.Perbedaannya terletak pada jenis elektrolit yang digunakan. Elektrolit pada bateraialkali adalah KOH atau NaOH. Reaksi yang terjadi adalah:
anoda: Zn + 2 OH-→ZnO + H2O + 2e
katoda: 2MnO2+ H2O + 2e-→Mn2O3+ 2OH-
Potensial sel yang dihasilkan baterai alkali 1,54 volt. Arus dan tegangan padabaterai alkali lebih stabil dibanding baterai karbon-seng.
6.      Baterai perak oksida
Bentuk baterai ini kecil seperti kancing baju biasa digunakan untuk baterai arloji,kalkulator, dan alat elektronik lainnya. Anoda yang digunakan adalah seng,katodanya adalah perak oksida dan elektrolitnya adalah KOH. Reaksi yang terjadi:
anoda : Zn→Zn2++ 2 e-
katoda : Ag2O + H2O + 2e→2Ag + 2 OH-
Potensial sel yang dihasilkan sebesar 1,5 volt.
7.      AKI
Jenis baterai yang sering digunakan pada mobil adalah baterai 12 volt timbal-asamyang biasa dinamakan Aki. Baterai ini memiliki enam sel 2 volt yang dihubungkanseri. Logam timbal dioksidasi menjadi ion Pb2+ dan melepaskan duaelektron di anoda. Pb dalam timbal (IV) oksida mendapatkan dua elektron danmembentuk ion Pb2+ di katoda. Ion Pb2+bercampur dengan ion SO42- dari asamsulfat membentuk timbal (II) sulfat pada tiap-tiap elektroda. Jadi reaksi yang terjadiketika baterai timbal-asam digunakan menghasilkan timbal sulfat pada keduaelektroda. PbO2+ Pb + 2H2SO4→2PbSO4+ 2H2O
Reaksi yang terjadi selama penggunaan baterai timbal-asam bersifat spontan dantidak memerlukan input energi. Reaksi sebaliknya, mengisi ulang baterai, tidakspontan karena membutuhkan input listrik dari mobil. Arus masuk ke baterai danmenyediakan energi bagi reaksi di mana timbal sulfat dan air diubah menjaditimbal(IV) oksida, logam timbal dan asam sulfat.
2PbSO4+ 2H2O→PbO2+ Pb + 2H2SO4
8.      Baterai karbon-seng
Kalau anda memasukkan dua atau lebih baterai dalam senter, artinya andamenghubungkannya secara seri. Baterai harus diletakkan secara benar sehinggamemungkinkan elektron mengalir melalui kedua sel. Baterai yang relatif murah iniadalah sel galvani karbon-seng, dan terdapat beberapa jenis, termasuk standarddan alkaline. Jenis ini sering juga disebut sel kering karena tidak terdapat larutanelektrolit, yang menggantikannya adalah pasta semi padat.Pasta mangan(IV) oksida (MnO2) berfungsi sebagai katoda. Amonium klorida(NH4Cl) dan seng klorida (ZnCl2) berfungsi sebagai elektrolit. Seng pada lapisanluar berfungsi sebagai anoda.Reaksi yang terjadi :
anoda : Zn→Zn2++ 2 e-
katoda : 2MnO2+ H2O + 2e-→Mn2O3+ 2OH-
Dengan menambahkan kedua setengah reaksi akan membentuk reaksi redoksutama yang terjadi dalam sel kering karbon-seng.
Zn + 2MnO2+ H2O→Zn2++ Mn2O3+ 2OH-
Baterai ini menghasilkan potensial sel sebesar 1,5 volt. baterai ini bias digunakanuntuk menyalakan peralatan seperti senter, radio, CD player, mainan, jam dansebagainya.

9.      Pengaratan logam
4Fe(s)+3O2(g)→2Fe2O3(s)

10.  Redoks dalam Fotografi
Film fotografi dibuat dari plastik yang dilapisi gelatin yang mengandung milyaran butiran AgBr, yang peka terhadap cahaya.
·         Ketika cahaya mengenai butiran-butiran AgBr, terjadilah reaksi redoks
·         Sehingga ion Ag+ tereduksi menjadi logamnya, dan ion Br- menjadi gas Bromin
11.  Pernapasan sel
Contohnya, adalah oksidasi glukosa (C6H12O6) menjadi CO2 dan reduksi oksigen menjadi air. Persamaan ringkas dari pernapasan sel adalah:
C6H12O6 + 6 O2 → 6 CO2 + 6 H2O


12.  Reaksi dalam sel bahan bakar
2H2+4OH-→4H2O+4e
O2(g)+2H2O+4e-→4OH-
Reaksitotal
2H2(g)+O2(g)→2H2O(l)
13.  Las karbits
Karbit atau Kalsium karbida adalah senyawa kimia dengan rumus kimia CaC2. Karbit digunakan dalam proses las karbit dan juga dapat mempercepat pematangan buah.
Persamaan reaksi Kalsium Karbida dengan air adalah:
CaC2 + 2 H2O → C2H2 + Ca(OH)2
Karena itu 1 gram CaC2 menghasilkan 349ml asetilen. Pada proses las karbit, asetilen yang dihasilkan kemudian dibakar untuk menghasilkan panas yang diperlukan dalam pengelasan.
14.  Pada perkaratan besi 
Pada peristiwa perkaratan (korosi), logam mengalami oksidasi, sedangkan oksigen (udara) mengalami reduksi.
Rumus kimia dari karat besi adalah Fe2O3 . xH2O => berwarna coklat-merah. Korosi merupakan proses elektrokimia. Pada korosi besi, bagian tertentu dari besi itu berlaku sebagai anode, dimana besi mengalami oksidasi.
Fe(s) -----> Fe2+(aq) +2e .............. E=+0,44V
O2(g) + 2H2O(l) +4e --------> 4OH- ....... E=+0,40V
Ion besi (II) yg terbentuk pd anode selanjutnya teroksidasi membentuk ion besi (III) yg kemudian membentuk senyawa oksida terhidrasi, Fe2O3 . xH2O, yaitu karat besi.
15.  Pengolahan Air Kotor (Sewage)
Pengolahan air kotor ada 3 tahap : tahap primer, sekunder, dan tersier. Saya akan menyingkat tahap ini satu persatu...
a)      TAHAP PRIMER
untuk memisahkan sampah yang tidak larut air, yang dilakukan dengan penyaringan dan pengendapan.
b)      TAHAP SEKUNDER
untuk menghilangkan BOD dengan jalan mengOKSIDASInya.
c)      TAHAP TERSIER
untuk menghilangkan sampah yang masih terdapat.
Lumpur aktif merupakan Lumpur yang kaya dengan bakteri yang dapat menguraikan limbah organic yang dapar mengalami biodegradasi. Bakteri aerobmengubah sampah organic menjadi biomassa dan CO2, N menjadi ammoniumdan nitrat, P menjadi fosfat.
16.  Penyapuhan emas
Dalam proses penyepuhan dengan emas reaksi yg terjadi adalah reduksi ion-ion emasmenjadi logamnya,
Au+ + e- -> Au atau Au3+ + 3e- -> Au2.

17.  Peleburan biji logam
Untuk besi, reaksi totalnya adalah
2Fe2O3 + 3C -> 4Fe + 3CO2 Fe2O3  adalah bijih besi (hematit) dengan kokas (karbon/C) sebagai reduktor.
18.  Dalam sistem biosensor 
Sistem biosensor berupa alat pengukur kadar gula dan kolesterol berbasis enzimdidalam tanah untuk keperluan medis yang menggunakan teknologi film tebal(thick film). Alat Pengukur kadar gula dan kolesterol dalam darah bekerjamenggunakan prinsip elektrokimia amperometrik. Prinsip kerja deteksi dari alatini didasari pada reaksi yang terjadi antara enzim glucose oxidase dancholesterol oxidase dengan sample darah yang diukur. Proses reaksi kimiawi inimenghasilkan aliran arus listrik yang kemudian diproses oleh signal conditioningdan data akusisi. Hasil proses ini merupakan besar kadar gula dan kolesterol didalam darah. Peralatan ini bersifat portable, kompak dan berdaya rendah
19.  Pengolahan Alumunium
Zaman dahulu kala, Alumunium termasuk logam yang harganya mahaldipasaran. Hal ini dikarenakan jumlahnya yang sedikit di alam dan caramendapatannya yang cukup sulit. Cara memperolehnya dengan cara elektrolisistidak berhasil karena apabila larutan garam alumunium dihidrolisis, air lebihmudah direduksi daripada Ion Alumunium. Hal ini menyebabkan gas Hidrogenyang terbentuk di anoda dan bukannya Alumunium. Elektrolisis leburanAlumunium juga tidak berhasil karena 2 hal : Larutan tidak berbentuk ion dansenyawanya mudah menguap apabila bersuhu tinggi. Elektrolisis oksidanya jugatidak praktis karena titik lelehnya yang tinggi yang mencapai 2000 derajatcelsius.Pada tahun 1886, Charles Hall dari Oberlin College menemukan cara yangdapatdigunakan untuk mengelektrolisis Alumunium Oksida dengan menggunakan Al2O3 dengan Kriolit Na3AlF3. Penambahan Kriolit ke dalam  Al2O3 menurunkan temperatur campuran hingga 1000 derajat celcius, sehingga elektrolisi dapat dilaksanakan. Bejana yang menampung campuran alumunium terbuat dari besiyang dilapisi beton yang bertindak sebagai katoda dan batang karbon yang berfungsi sebagai Anoda.
20.  Pengolahan Magnesium
Magnesium merupakan logam yang penting karena sangat ringan. Magnesiumdijumpai berlimpah dalamair laut. Ion magnesium diendapkan dari air lautsebagai hodroksida, kemudian Mg(OH)2 diubah menjadi kloridanya dengan caramereduksinya dengan asam klorida. setelah airnya menguap, MgCl2dilelehkandan dielektrolisis. Magnesium dihasilkan di katoda dan Klor di









Kesimpulan:
Jadi, reaksi redoks memiliki banyak manfaat dalam kehidupan sehari-hari dilihat dari aplikasipenerapannya.
























DAFTAR PUSTAKA